Tecnología
WhatsApp: en qué celulares dejará de funcionar la aplicación desde el 30 de noviembre

Una vez más, WhatsApp cerrará el 2022 con una nueva actualización, lo cual no le sienta muy bien a todos los usuarios ya que la aplicación dejará de funcionar en algunos modelos de telefonía celular bastante populares a finales de este mes.
Será a partir del próximo 30 de noviembre cuando WhatsApp definitivamente “se apague” en algunos smartphones debido a que estos teléfonos no soportarían los ajustes realizados a la app, la cual actualmente es la segunda más descargada en todo el mundo, detrás de Instagram.
Los dispositivos en los que ya no se podrá acceder a WhatsApp son aquellos que funcionan con sistema Android 4.0.3 y en los iOS la versión 12, por lo que se verán afectados varios modelos de iPhone, Samsung, LG, Huawei, entre otros. El periodo de antigüedad de los equipos abarca de los 5 a los 10 años.
Esto se debe a que con las diversas actualizaciones del servicio, que es propiedad de la compañía Meta, diferentes modelos dejan de poder procesar la aplicación.
Las personas que tengan uno de estos equipos y quieran tener Whatsapp deberán adquirir un nuevo dispositivo y realizar una copia de seguridad para no perder su historial de conversaciones.
La lista de celulares que dejarán de tener WhatsApp a partir del 30 de noviembre
* iPhone: iPhone 6S, iPhone SE, iPhone 6S Plus.
* Samsung: Samsung Galaxy Core, Samsung Galaxy Trend Lite, Samsung Galaxy Ace 2, Samsung Galaxy S3 mini, Samsung Galaxy Trend II, y Samsung Galaxy X cover 2.
* LG: LG Optimus L3 II Dual, LG Optimus L5 II, LG Optimus F5, LG Optimus L3 II, LG Optimus L7II, LG Optimus L5 Dual, LG Optimus L7 Dual, LG Optimus F3, LG Optimus F3Q, LG Optimus L2 II, LG Optimus L4 II, LG Optimus F6 LG Enact, LG Lucid 2, y LG Optimus F7.
* Huawei: Huawei Ascend Mate, Huawei Ascend G740, Huawei Ascend D2.
* Otras marcas: Sony Xperia M, Lenovo A820, ZTE V956 – UMI X2, ZTE Grand S Flex, ZTE Grand Memo, Faea F1THL W8, Wiko Cink Five, Winko Darknight, y Archos 53 Platinum
Principal
Samsung alista el lanzamiento de su nueva serie Z con inteligencia artificial integrada

Samsung se prepara para presentar una nueva generación de sus teléfonos plegables de la serie Z —Fold y Flip— con una promesa clara: llevar la experiencia móvil a un nivel “Ultra” que combine diseño, innovación y tecnología basada en inteligencia artificial.
Aunque la compañía aún no ha revelado detalles específicos ni la fecha de lanzamiento, ha adelantado que esta nueva línea buscará integrar arte e ingeniería para mejorar las interacciones cotidianas, más allá de simples mejoras técnicas.
Entre las funciones destacadas se espera una mayor portabilidad, una cámara optimizada y una integración más profunda con herramientas de IA, capaces de asistir al usuario en tareas como responder correos, encontrar lugares por comandos de voz o capturar fotos con mayor precisión.
Con esta apuesta, Samsung pretende redefinir el concepto de experiencia móvil de alta gama. La expectativa crece en torno a una presentación que marcaría un nuevo estándar en dispositivos plegables.
Principal
Desbloqueando la IA empresarial con innovación open source: cualquier modelo, acelerador o nube

Por: Chris Wright, director de tecnología y vicepresidente sénior, Ingeniero Global, Red Hat
“Cualquier carga de trabajo, cualquier aplicación, en cualquier lugar” fue el mantra del Red Hat Summit 2023. Es cierto que, en los últimos dos años, hemos visto algunos cambios en TI. Pero la visión de Red Hat no ha cambiado, ha evolucionado.
“Cualquier modelo, acelerador o nube”.
Ese es el mensaje de la nube híbrida para la era de la IA. Y la mejor parte es que, al igual que la “antigua” nube híbrida, la innovación open source es la que impulsa todo. En el Red Hat Summit mostramos cómo los ecosistemas de IA estructurados en torno al open source y a modelos abiertos pueden generar nuevas opciones para las empresas.
La apertura trae consigo la posibilidad de elegir y esta libertad da paso a una mayor flexibilidad: desde el modelo que mejor responde a las necesidades de la empresa hasta el acelerador subyacente y el lugar donde se ejecutará efectivamente la carga de trabajo. Las estrategias de IA exitosas seguirán a los datos, dondequiera que se encuentren en la nube híbrida.
¿Y qué impulsa a la nube híbrida? El open source.
La inferencia potencia la IA
En mi opinión, debemos empezar a mirar más allá de los modelos. Sí, es verdad que los modelos son muy importantes para las estrategias de IA. Pero sin la inferencia, la faceta «práctica» de la IA, los modelos son simplemente conjuntos de datos que no «hacen» nada. La inferencia se refiere a la rapidez con la que un modelo responde a la información ingresada por el usuario y a la eficiencia con la que se pueden tomar decisiones en recursos informáticos acelerados. En última instancia, las respuestas lentas y la poca eficiencia cuestan dinero y generan desconfianza en el cliente.
Es por eso que me entusiasma mucho que Red Hat priorice la inferencia en nuestro trabajo con la IA open source, comenzando con el lanzamiento de Red Hat AI Inference Server. Esta solución, que surge a partir del proyecto open source vLLM líder y está optimizada con tecnologías Neural Magic, ofrece a las implementaciones de IA un servidor de inferencia con soporte, ciclo de vida completo y listo para producción. Lo mejor de todo es que puede rastrear tus datos dondequiera que se encuentren, ya que la solución funcionará con cualquier plataforma de Linux, cualquier distribución de Kubernetes, Red Hat o de cualquier otro modo.
¿Qué es mejor que la IA empresarial? La IA empresarial a gran escala
La aplicación estrella de la TI empresarial no es una única carga de trabajo unificada ni un nuevo servicio en la nube: es la capacidad de escalar de forma rápida y eficiente. Esto también se aplica a la IA. Sin embargo, la IA presenta una particularidad: los recursos informáticos acelerados que sustentan las cargas de trabajo de IA también deben escalarse. Esta no es una tarea fácil, en vista de los gastos y las habilidades necesarias para implementar este hardware en la forma debida.
Lo que necesitamos no es solo la capacidad de escalar la IA, sino también de distribuir cargas de trabajo masivas de IA entre múltiples clústeres de computación acelerada. Esto se ve agravado por el escalado del tiempo de inferencia que requieren los modelos de razonamiento y la IA agéntica. Al compartir la carga, se pueden reducir los problemas de rendimiento, mejorar la eficiencia y, en última instancia, la experiencia del usuario. Con el proyecto llm-d de código abierto, Red Hat ha tomado medidas para hacer frente a este problema.
El proyecto llm-d, dirigido por Red Hat y respaldado por líderes del sector de la IA en aceleración de hardware, desarrollo de modelos y cloud computing, combina el poder comprobado de la orquestación de Kubernetes con vLLM, uniendo dos referentes del open source para responder a una necesidad muy real. Junto con tecnologías como el enrutamiento de redes con IA y la descarga de caché KV, entre otras, llm-d descentraliza y democratiza la inferencia de IA y, de ese modo, ayuda a las empresas a optimizar sus recursos informáticos y disponer de cargas de trabajo de IA más efectivas y de menor costo.
Abierto a lo que se viene en IA, no solo al código
Llm-d y vLLM, incluidos en Red Hat AI Inference Server, son tecnologías open source preparadas para responder a los desafíos de la IA empresarial de hoy. Sin embargo, las comunidades de desarrollo no se limitan a analizar lo que se necesita hacer ahora. Las tecnologías de IA tienen una forma particular de acortar los plazos: el vértigo de la innovación implica que algo que se creía que no plantearía un desafío en años, de repente debe afrontarse de lleno.
Por ese motivo es que Red Hat está destinando recursos a la fase de desarrollo inicial de Llama Stack, el proyecto liderado por Meta que ofrece componentes básicos y API estandarizados para los ciclos de vida de las aplicaciones de IA generativa. Además, Llama Stack es ideal para crear aplicaciones de IA agénticas, que representan una nueva evolución de las potentes cargas de trabajo de IA generativa que vemos hoy en día. Más allá de su desarrollo inicial, Llama Stack está disponible como versión preliminar para desarrolladores dentro de Red Hat AI, para aquellas empresas que hoy quieran comprometerse con el futuro.
En lo que respecta a los agentes de IA, aún no contamos con un protocolo común para el modo en que otras aplicaciones les proporcionan contexto e información. Aquí es donde entra en juego el protocolo de contexto de modelo (MCP). Desarrollado y convertido en open source por Anthropic a fines de 2024, se trata de un protocolo estandarizado para las interacciones entre agente y aplicación, similar a los protocolos cliente-servidor de la informática tradicional. Pero lo más importante es que las actuales aplicaciones pueden, de improviso, valerse de la IA sin necesidad de una reimplementación a gran escala. Esto es importantísimo y no sería posible si no fuera por el poder del open source. Al igual que Llama Stack, MCP está disponible como versión preliminar para desarrolladores en la plataforma de Red Hat AI.
Los modelos propietarios de IA pueden haber logrado una ventaja inicial, pero no hay duda de que los ecosistemas abiertos los han superado, en especial en cuanto al software que sustenta estos modelos de IA de próxima generación. Gracias a vLLM y llm-d, junto con productos empresariales open source con seguridad reforzada, el futuro de la IA es prometedor, independientemente del modelo, el acelerador o la nube, y está impulsado por el open source y por Red Hat.